Combined lesions of direct and indirect basal ganglia pathways but not changes in dopamine levels explain learning deficits in patients with Huntington's disease.
نویسندگان
چکیده
Huntington's disease (HD) is a hereditary neurodegenerative disease of the basal ganglia that causes severe motor, cognitive and emotional dysfunctions. In the human basal ganglia, these dysfunctions are accompanied by a loss of striatal medium spiny neurons, dysfunctions of the subthalamic nucleus and globus pallidus, and changes in dopamine receptor binding. Here, we used a neuro-computational model to investigate which of these basal ganglia dysfunctions can explain patients' deficits in different stimulus-response learning paradigms. We show that these paradigms are particularly suitable for scrutinising the effects of potential changes in dopamine signaling and of potential basal ganglia lesions on overt behavior in HD. We find that combined lesions of direct and indirect basal ganglia pathways, but none of these lesions alone, reproduce patients' learning impairments. Degeneration of medium spiny neurons of the direct pathway accounts for patients' deficits in facilitating correct responses, whereas degeneration of indirect pathway medium spiny neurons explains their impairments in inhibiting dominant but incorrect responses. The empirical results cannot be explained by lesions of the subthalamic nucleus, which is part of the hyperdirect pathway, or by changes in dopamine levels. Overall, our simulations suggest combined lesions of direct and indirect pathways as a major source of HD patients' learning impairments and, tentatively, also their motor and cognitive deficits in general, whereas changes in dopamine levels are suggested to not be causally related to patients' impairments.
منابع مشابه
Event Abstract A Fast-Slow Minimal Model for Medium Spiny Neurons: A Geometrical Perspective
The role of basal ganglia in motor control is well-known [1,2], but it also takes part in high order cognitive processes, such as reward-related learning, goal-directed behavior or selective attention [3-5]. The complicated and creative information processing ability of basal ganglia makes it home for decisions amongst available competitive choices. Dysfunction of this sub-cortical network, alo...
متن کاملOpen interconnected model of basal ganglia-thalamocortical circuitry and its relevance to the clinical syndrome of Huntington's disease.
The early stages of Huntington's disease (HD) present with motor, cognitive, and emotional symptoms. Correspondingly, current models implicate dysfunction of the motor, associative, and limbic basal ganglia-thalamocortical circuits. Available data, however, indicate that in the early stages of the disease, striatal damage is mainly restricted to the associative striatum. Based on an open interc...
متن کاملBidirectional plasticity in striatonigral synapses: a switch to balance direct and indirect basal ganglia pathways.
There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral (direct pathway) synapses are not known. Here, w...
متن کاملThe role of the basal ganglia in learning and memory: neuropsychological studies.
In recent years, a common approach to understanding how the basal ganglia contribute to learning and memory in humans has been to study the deficits that occur in patients with basal ganglia pathology, such as Parkinson's disease and Huntington's disease. Pharmacological manipulations in patients and in healthy volunteers have also been conducted to investigate the role of dopamine, a neurotran...
متن کاملCognitive deficits and striato-frontal dopamine release in Parkinson's disease.
Idiopathic Parkinson's disease (PD) is often accompanied by a pattern of executive deficits similar to those found in patients with frontal lobe lesions. We investigated whether such cognitive deficits are attributable to frontal lobe dysfunction as a direct consequence of impaired mesocortical dopaminergic transmission or an indirect consequence of impaired nigrostriatal dopaminergic function....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 41 9 شماره
صفحات -
تاریخ انتشار 2015